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Origins of uncertainty

 The variability of observed repeatable natural
phenomena : « randomness ».

— Coins, dice...: what about the outcome of the next
throw?

e The lack of information: incompleteness

— because of information is often lacking, knowledge
about 1ssues of interest is generally not perfect.

 Conflicting testimonies or reports: inconsistency
—  The more sources, the more likely the inconsistency



Example

Variability: daily quantity of rain in Toulouse
— May change every day
— It can be estimated through statistical observed data.
— Beliefs or prediction based on this data

Incomplete information : Birth date of Brazil President
— It 1s not a variable: it is a constant!
— You can get the correct info somewhere, but it 1s not available.

— Most people may have a rough idea (an interval), a few know
precisely, some have no idea: information is subjective.

— Statistics on birth dates of other presidents do not help much.

Inconsistent information : several sources of information
conflict concerning the birth date (a book, a friend, a
website).



Frequency vs. beliefs

1. Frequencies: capturing variability of physical
phenomena through repeated observations.

2. Belief in unique events : due to lack of information

1.  via betting on lottery tickets for non-repeatable events
2. by analogical reasoning using thought experiment (balls in an
urn)

Probability theory used for random phenomena, and
beliefs.

The connection: Degrees of belief induced on n+1th trial
outcome are equated to frequencies of the n previous
occurrences of a repeatable phenomenon.



What is a probability given by an expert?

* Does the expert provide

— An (ill-known) frequency (how often an
infortunate event may occur?)

— A degree of pure beliet ?

* Are frequencies and belief degrees always
commensurate ?

e Often rather linguistic than numerical, then
translated into numbers.



What is the expressive power of probability
distributions

Bayesian credo: any state of knowledge can be represented
by a unique probability distribution.

Do uniform distributions represent ignorance ?

1. Ambiguity : do uniform bets express knowledge of
randomness or plain ignorance?

2. Instability : the shape of a probability distribution is not
scale-invariant, while ignorance is.

3. Empirical falsification: When information is missing,
decision-makers do not always choose according to a
single subjective probability (Ellsberg paradox).



The paradox of partial ignorance

You have the same knowledge about x >0 as
about y = 1/x.
e xin [a, b] is equivalent to yin [1/b, 1/a]

* But a uniform distribution on [a, b] is
incompatible with a uniform distribution on

[1/b, 1/a]

Conclusion: uniform probability distributions
do not represent 1ignorance.



Set-Valued Representations of
Partial Information

A piece of incomplete information about an ill-known
quantity x 1s represented by a pair (x, £) where E 1s a set
called a disjunctive (epistemic) set,

E contains all values of x an agent considers not impossible
and represent the epistemic state of an agent.

It 1s a subset of mutually exclusive values, one of which 1s
the real x.

Such sets are as subjective: E is like the support of a
subjective probability function.



Set-Valued Representations of
Partial Information

e (x,E)means «all I know is that x EE »
 Examples

— Intervals E = [a, b]: incomplete numerical information

uncertainty propagation via interval analysis

— Classical Logic: incomplete symbolic information

E = Models of a proposition p (or a set thereof) believed true.

being able or not to prove or disprove something from a knowledge
base K



POSSIBILITY THEORY:
Boolean beliefs

If all you know is that x € E then

- You believe event A if A will occur in every situation X you consider
possible :A certainty (necessity) function (logical consequence).

N(A)=1if EC A, and O otherwise

- You judge event A possible if it is not incompatible with what you
know : A Boolean possibility function (logical consistency)

[TIA)=1,if ANE#® and 0 otherwise

N(A) = 1 - TI(A®) < TI(A)
II(A U B) = max(IT(A), II(B)); N(A N B) = min(N(A), N(B)).
N(A)>0 implies TI(A) = 1

( a simple modal epistemic logic)



Motivation for going beyond
probability

 Have a language that distinguishes between uncertainty
due to variability from uncertainty due to lack of
knowledge or missing information.
— For describing variability: Probability distributions
but information demanding, and paradoxical for ignorance

— For representing incomplete information : Sets (intervals).
but a very crude representation of uncertainty

o Find representations that allow for both aspects of
uncertainty : incomplete information about probabilistic
models



Find an extended representation of
uncertainty

Explicitly allowing for missing information (= that uses
sets)

Distinguishes between not believing A and believing its
negation

More informative than pure intervals or classical logic:
with grades of certainty or belief

Less information demanding than single probability
distributions

Allows for addressing the issues dealt with by both
standard probability, and logics for reasoning about
knowledge.



GRADUAL REPRESENTATIONS OF
UNCERTAINTY using capacities

Family of propositions or events £ forming a
Boolean Algebra

— S, @ are events that are certain and ever impossible
respectively.

* A confidence measure g: a function from T to
[0,1] such that

- g0)=0 ;  g(S)=1
— monotony : if A C B (=A implies B) then g(A) =< g(B)

* g(A) quantifies the confidence of an agent in
proposition A.

(g is known as a Choquet capacity, or a fuzzy measure)



BASIC PROPERTIES OF CONFIDENCE
MEASURES

* g(AUB) 2 max(g(A), g(B));

* g(ANB) < min(g(A), g(B))

e It includes:

— probability measures: P(AUB) = P(A) + P(B) - P(ANB)
— possibility measures  II(AUB) = max(I1(A), I1(B))
— necessity measures N(ANB) = min(N(A),N(B))

o The two latter functions do not require a
numerical setting



A GENERAL SETTING FOR REPRESENTING
GRADED CERTAINTY AND PLAUSIBILITY

e 2 conjugate set-functions Pl and Cr generalizing
probability P, possibility I1, and necessity N.
 Postulates
— Cr and Pl are monotonic under inclusion (= capacities).
— Cr(A) < PI(A) "certain implies plausible”
— PI(A) =1 — Cr(A°) duality certain/plausible
— If P1 = Cr then it 1s P.
e Conventions :
— PI(A) =0 "impossible" ; Cr(A)= 1 "certain"
— Cr(A) =0 and PI1(A) =1 "ignorance" (no information)
— PI(A) — Cr(A) quantifies ignorance about A



Possibility Theory

(Shackle, 1961, Lewis, 1973, L.J. Cohen 1977, Zadeh, 1978)

A piece of incomplete information "x € E™"
admits of degrees of possibility.

E is mathematically a (normalized) fuzzy set.

Ug(s) = Possibility(x = s) = m (s)

Conventions:

Vs, (s) is the degree of plausibility of x ='s

mt (s) = 0 iff x = s 1s impossible, totally surprising

nt (s) = 1 iff X = s is normal, fully plausible, unsurprising
(but no certainty)



Improving expressivity of incomplete
information representations

What about the birth date of the president?

epartial ignorance with ordinal preferences : May
have reasons to believe that 1933 > 1932 = 1934 >
1931 = 1935 > 1930 > 1936 > 1929

eLinguistic information described by fuzzy sets:
“he 1s old 7 : membership p, p induces a possibility
distribution on possible birth dates.

eimprecise subjective information summarizing
opinions of one or several sources: Nested intervals
E,, E,, ...E_with confidence levels



POSSIBILITY AND NECESSITY
OF AN EVENT

How confident are we that x € A C S ? (an event A occurs)
given a possibility distribution 5t for x on S

e JI(A) =max,, (s):
to what extent some x € A 1s possible
(= to what extent A 1s consistent with T )
The degree of possibility that x EA
* N(A)=1-TII(A®) =min g, 1 - a(s):
to what extent no element outside A is possible
= to what extent 5t implies A
The degree of certainty (necessity) that x € A



Basic properties

IT(A U B) = max(I1(A), II(B));
N(A N B) = min(N(A), N(B)).
Mind that most of the time :
II(A N B) < min(II(A), I1(B));
N(A U B) > max(N(A), N(B)

Example Total 1ignorance on A and B = A€
then N(A) = N(A) =0

Corollary N(A)>0=11(A) =1



A pioneer of possibility theory

In the 1950’s, G.L.S. Shackle called "degree of potential
surprize" of an event its degree of impossibility = 1 — TI(A).

Potential surprize 1s valued on a disbelief scale, namely a
positive interval of the form [0, y*], where y* denotes the
absolute rejection of the event to which it is assigned, and O
means that nothing opposes to the occurrence of A.

The degree of surprize of an event 1s the degree of surprize of
its least surprizing realization.

He introduces a notion of conditional possibility



Qualitative vs. quantitative possibility theories

e (Qualitative:
— comparative: A complete pre-ordering =. on U
A well-ordered partition of U: E1 >E2 > ... > En

— absolute:  (s) € L = finite chain, complete lattice...
e Quantitative: m (s) € [0, 1], integers...

One must indicate where the numbers come from.

All theories agree on the fundamental maxitivity axiom
II(A U B) = max(II(A), II(B))
Theories diverge on the conditioning operation



POSSIBILITY AS UPPER PROBABILITY

e (Given a numerical possibility distribution 7, define
P(n) ={P| P(A) <II(A) for all A}

e Then, generally it holds that
II(A) = sup {P(A) | P € P(n)};
N(A) =inf {P(A) I P € P(m)}
(coherence)

* So m 1s a faithful representation of a family of
probability measures



LIKELTHOOD FUNCTIONS

e Likelihood functions A(x) = P(Al x) behave like possibility
distributions when there is no prior on X, and A(X) is used as
the likelihood of x.

e If A(B) is the likelihood that x € B then A should be set-
monotonic: {b} C B implies A(b) < A(B)

It holds that A(B) = P(Al B) < max, 5 P(Al x)

It implies A(B) = max, g A(X)

(But possibility degrees here are defined up to a positive
multiplicative function)



Maximum likelihood principle 1s in
agreement with possibility theory

* The classical coin example: 0 1s the unknown
probability of “heads”

 Within n experiments: k heads, n-k tails
e P(k heads, n-k tails | ) = 6%(1- )"k is

the degree of possibility m(60) that the probability of
“head” is 0.

In the absence of other information the best choice
is the one that maximizes 7t(6), 6 € [0, 1]

It yields 6 = k/n.



Blending intervals and probability

e Representations that may account for variability,
incomplete information, and belief must combine
probability and epistemic sets.

— Sets of probabilities : imprecise probability theory
— Random(ised) sets : Dempster-Shafer theory

— Fuzzy sets: numerical possibility theory

* Relaxing the probability axioms :

— Each event has a degree of certainty and a degree of plausibility,
instead of a single degree of probability

— When plausibility = certainty, it yields probability



Imprecise probability theory

e A state of information is represented by a family P of
probability distributions over a set X.

e To each event A is attached [P.(A), P*(A)], a probability
interval such that
— P.(A) = inf{P(A), PE P}
— P*(A) = sup{P(A), PE P} = 1 — P,(A9)

cP = {P,P(A) = P.(A) for all A} is convex
e Usually CP strictly contains family P

-> The basic representation tool is a convex set of
probabilities (credal set)



Frequentist view

» Incomplete knowledge of a frequentist
probabilistic model : 3P € P.

— Expert opinion about frequencies (fractiles, intervals
with confidence levels)

— Subjective estimates of support, mode, etc. of a
distribution

— Parametric model with incomplete information on
parameters (partial subjective information on mean
and variance)

— Parametric model with confidence intervals on
parameters due to a small number of observations



Subjectivist view (Peter Walley)

* Expert provides for selected events A,,1=1,...,n

- P,(A), the highest acceptable price for buying a bet on event A
winning 1 euro if A occurs

— Phigh(A) =1 — P, _(A°) is the least acceptable price for
selling this bet.

low

— These prices may differ (no exchangeable bets)
e Epistemic state is modelled by the convex probability set
P={P.PA)=P,  (A)i=1,...,n}

low

e Warning : P.(A) = inf{P(A), PE P} is a degree of belief
in A but there is no unknown P €



WHY REPRESENTING INFORMATION
BY PROBABILITY FAMILIES ?

* In the case of generic (frequentist) information
using a family of probabilistic models, rather than
selecting a single one, enables to account for
incompleteness and variability.

* In the case of subjective belief: distinction
between

— believing neither a proposition nor its opposite
(P.(A) and P.(A°) low)

— and believing its negation
(P.(A) low and P.(A°) high).



Random sets and evidence theory

A probability distribution over subsets of S (a random set) :
Ypcs M(E) = 1 (mass function), m(<J) =0

e The family F = {E: m(E) > 0} of « focal » (disjunctive)
non-empty sets represents
— A collection of incomplete observations (imprecise statistics).
— Unreliable testimonies
 m i1s a randomized epistemic state where
— m(E) = probability(E is the correct epistemic state) (# P(E))
= probability(only knowing”(x in E)”)

— m(E) 1s a probability mass that should be distributed
among elements of E but are not by lack of information.



Theory of evidence

e degree of certainty (belief) :
— Bel(A) = > m(E))
ECAE=0
— total mass of information implying the occurrence of A
— (probability of provability)
e degree of plausibility :
- Pl(A)= ) m(E.) =1 — Bel(A®) 2 Bel(A)
ENA=0Q
— total mass of information consistent with A

— (probability of consistency)



Canonical examples

Objectivist : Frequentist modelling of a collection
of incomplete observations (imprecise statistics) :

Uncertain subjective information:

— Merging of unreliable testimonies (Shafer’s book) :
human-originated singular information

Unreliable sensors : the quality/precision of the
information depends on the 1ll-known sensor state.



Example of uncertain evidence : Unreliable
testimony (SHAFER-SMETS VIEW)

« John tells me the president 1s between 60 and 70 years
old, but there 1s some chance (subjective probability p) he
does not know and makes 1t up».

— E =[60,70]; Prob(Knowing “x& E =[60,70]”) =1 —p.

— With probability p, John invents the info, SO we know nothing
(Note that this is different from a lie).

We get a simple support belief function :
mE)=1-p and m(S)=p
Equivalent to a possibility distribution
- ms)=11fx€EE and 7(s) = p otherwise.




Example of statistical belief function:
imprecise observations in an opinion poll

e Question : who is your preferred candidate
in C={a,b,c,d,e, f} ?77?
— To a population Q= {1, ...,1,...,n} of n persons.
— Imprecise responses r = « x(i) € E. » are allowed
— No opinion (r =C) ; « left wing » r = {a, b, ¢} ;
— «right wing » r={d, e, f} ;
— amoderate candidate : r = {c, d}
e Definition of mass function:
— m(E) = (I/n)-card({i,E. = E})
— = Proportion of imprecise responses « x(1) € E »



The probability that a candidate in subset A C C s
elected is imprecise :

Bel(A) = P(A) < PI(A)
There is a fuzzy set F of potential winners:
Ue(x) =X , c g m(E) = PI({x}) (contour function)

Ug(X) 1s an upper bound of the probability that x 1s elected.
It gathers responses of those who did not give up voting
for x

Bel({x}) gathers responses of those who claim they will
vote for x and no one else.



PARTICULAR CASES

INCOMPLETE INFORMATION:
mE)=1,m(A)=0, AzE
TOTAL IGNORANCE : m(S) = 1:
— Forall A#S,0, Bel(A) =0, Pl(A) = 1

PROBABILITY: if Vi, E, = singleton {s.} (hence disjoint
focal sets )

— Then, for all A, Bel(A) = PI(A) =P(A)

— Hence precise + scattered information

POSSIBILITY THEORY : the opposite case

E,CE,C E;... C E, :imprecise and coherent information
— 1iff PI(A U B) = max(PI1(A), PI(B)), possibility measure
— iff Bel(A M B) = min(Bel(A), Bel(B)), necessity measure



Possibility theory case

possibility levels
I[>0>a3>...> 0,

Letm,=a,— o thenm; +... + m =1,

1+1
with focal sets = cuts A, = {s, 7(s) = o.}

A basic probability assignment (SHAFER)
US) = 2. «r M, (One point-coverage function) = P1({s}).
Only in the consonant case can m be recalculated from 7

Bel(A) = Xgicy m; = N(A); PI(A) = TI(A)



Theory of evidence vs. imprecise
probabilities

e Bel 1s o-monotone (super-additive at any order)
e Bel 1s a special case of lower probability

— The set P, = {P = Bel} characterizes Bel:

Bel (A) = inf {P(A) | P(B) = Bel(B) for all B}
e The solution m to the set of equations V A C X

g(A) = 2 m(E;)
ECAE=0
1s unique (Moebius transform)
— It is positive iff g is a belief function



LANDSCAPE OF UNCERTAINTY

THEORIES

BAYESIAN/STATISTICAL PROBABILITY
Randomized points

UPPER-LOWER PROBABILITIES
Disjunctive sets of probabilities

|

DEMPSTER UPPER-LOWER PROBABILITIES
SHAFER-SMETS BELIEF FUNCTIONS

/ Random disjunctive sets

Quantitative Possibility theory ——————— Classical logic
Fuzzy (nested disjunctive) sets Disjunctive sets



Language ditficulties

o [mprecise probability, belief functions and possibility

theory use different basic tools
— Imprecise probabilities: Convex probability sets (Credal sets)

— Belief functions: Moebius basic probability mass
— Possibility theory: Possibility distributions

o Concepts that make sense for credal sets,
may be hard to interpret in terms of
Moebius transforms or possibility
distributions and conversely



Practical representations

* Fuzzy intervals
e Probability intervals
e Probability boxes
Some are special random sets some not.
Simplified representations help us
— cut down computation costs
— Facilitate elicitation

— summarize results in a clear way



How to build possibility distributions

(not related to linguistic fuzzy sets!!!)

Nested random sets (= consonant belief functions)
Likelihood functions (in the absence of priors).
Probabilistic inequalities (Chebyshev...)

Confidence intervals (moving the confidence level between
Oand 1)

The cumulative PDF of P is a possibility distribution
(accounting for all probabilities stochastically dominated
by P)



From confidence sets to possibility
distributions

LetE,, E,, ...E_ be anested family of sets

A set of confidence levels a,, a,, ...a, in [0, 1]

Consider the credal set
P={P,P(E)=a,fori=1,...n}

Then 7 is representable by means of a possibility

measure with distribution

7T(X) = min, _ [..n Max (Ug(x), 1—-a)



POSSIBILITY DISTRIBUTION INDUCED
BY EXPERT CONFIDENCE INTERVALS

E,
JU
d
1
S B
H
e mMy= 0 = O3
)
E; :
v ------------J_------"-"-"----"J_"-".g ................. ?
: O3




A possibility distribution t can be obtained from any
family of nested confidence sets :
P@) ={P| P(x)=1-0a,a€(0,1]}

< »
<« >

FUZZY INTERVAL: N(x) =1 - «




Possibilistic view of probabilistic
inequalities

They can be used for knowledge representation

* Chebyshev inequality defines a possibility distribution that
dominates any density with given mean and variance:

P(V € [x7ea — ko, x"en + ko) = 1 — 1/k?
is equivalent to writing
a(x"en — ko) = a(x"en + ko) = 1/k?

e A triangular fuzzy number (TFN) defines a possibility
distribution that dominates any unimodal density with the
same mode and bounded support as the TFN.
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Probability boxes

e Aset P(F',F.)={P:F =P=x=F.} induced by two
cumulative disribution functions is called a
probability box (p-box),

e A p-box is a special random interval whose upper and
bounds induce the same ordering.




Probability boxes from possibility
distributions

* fuzzy intervals are more precise than with the
corresponding pairs of PDF's:

— F'(@) =TT ( (—>,a]) =m(a)ifa<m,
= 1 otherwise.
— F.{a)=Ny((-w,a]) =0ifa<m”
= 1 — n(a) otherwise

. P(r) is a proper subset of P(F*,F.): Notall P in
PF*,F.) are such that [T>=P

 Infact you can extract a p-box from any credal set P



P-boxes vs. fuzzy intervals

A triangular fuzzy number with support [1, 3] and mode 2.
Let P be defined by P({1.5})=P({2.5})=0.5.
Then F. <F <F, but P& P(II)

since P({1.5,2.5})=1>11({1.5,2.5})=0.5




Cumulative distributions are
possibility distributions

e A cumulative distribution F is a possibility
distribution generated by nested sets of the form

[x, +20), enclosing all probability distributions that
stochastically dominate F.

If t=F , then
P(r)= {P: F < F} = {p: P([x, +o0)) = 1-F(x)}
={P:P(Fz a)=1-a,a >0}
and we have that P(A) < sup, .. ,» F(X).



Fuzzy intervals are (2-sided)

cumulative distributions
e Consider a fuzzy interval st with cuts

r,=a,b,],0<a=<1,a=b;=m
It 1s a cumulative distribution in the sense that
() = 7 (b,) = P((-%0, a,]U[b,,, +))
for some probability measure P with mode m.

Ordering based on distance from m.



Putting together p-boxes and
fuzzy intervals

e The credal set of a p-box (F", F,) is the
intersection of possibilistic credal sets of 1'=F"
and mw.=1-F.°

P(F*,F.)= {p: F.<F <F"} = P(F") N P(1 - F.)
= {P: P([x, +)) = 1-F*(x) for all x
and P((-o0,x]) = F.(x) for all x}
= {P:P(Fza)=1-0>P(F.za) forall 0 <as< 1}
where a = F(x).

e I, F.are comonotone



Generalized p-box

* same construction using nested intervals
and comonotone functions 0 < 1 such that
1-0is a possibility distribution.

e The pair (i, 0) is a generalized p-box with
credal set P(r, 0) = P(x) N P(1-9)
with P(n) = {P:P(rza)>1-a,0<a=<1}
P(1-0)={P: P(1-0=za)>1-0,0<a =<1}

It still generates a belief function!



a = m(a) = m(b);
B =1-8(a)=1-08(b)=1-d((c)).
1-a<PE)=<p

\

4. E b

a

Generalized p-box



Examples, special cases, etc.

Nested confidence sets E. with a.<P(E.) <b.
Z-numbers (Zadeh): It is likely that I earn a lot
Special cases

- t=F", 0 =F.: pbox.

— 0 =0: fuzzy interval.

— 1t = 0 : thin cloud (Neumaier)

Extension : (7T, 8) non comonotone: cloud of
Neumaier (not a belief function).



From generalized p-boxes to
clouds

Fig 1.A Comonotonic cloud Fig 1.B Non-comonotonic cloud



How useful are these
representations:

* P-boxes can address questions about
threshold violations (x = a ?7?),

not questions of the form a<x=<b

* The latter questions are better addressed by
possibility distributions or generalized p-
boxes around a specific value.



Probability intervals

Probability intervals = a finite collection of

imprecise assignments [/, , u; | attached to

elements s; of a finite set S.

* The collection {[/,, u;, ] i=1,... n} induces the
family P, ={P: 1. < P({s;}) <u}.

Intervals [/., u; ] can be made optimally narrow.

1?2 l

Lower/upper probabilities on events are easy to compute

P.1s a 2-monotone Choquet capacity, not a belief
function.



Application to Risk Analysis

 Formal problem:

Given a numerical function f(x, y, z, ...), and some
uncertain knowledge on x, y, z, ... interval, possibilistic
(i, ), probabilistic (p,) or random set-like (v,)... find the
resulting uncertainty on f(x, y, z, ...).

e Application Contexts: Evaluation of risks of potentially
polluted sites for man and the environment

 Models simulate the transfer of pollutants from a source to
a vulnerable target, for different scenarii of exposure.



Risk analysis methodology

Elicitation/ data collection for inputs
Propagation of uncertainty
Exploitation of results

Decision



Risk analysis methodology : elicitation

The context of uncertainty theories 1s versatile and
lends itself to a representation of knowledge about
input variables faithful to what is available.

Don’t put more information than what you actually
have

e sufficient statistics: probability distribution

e [ll-known parametric model: p-box

e Expert-supplied intervals: fuzzy intervals, gen p-box
e Support and mode: fuzzy interval



Risk analysis methodology : propagation

Combining Monte-Carlo and interval analysis
techniques.

* Fuzzy intervals, p-boxes and generalized p-boxes
are random sets amenable to Monte-Carlo methods:

e Instead of picking values at random via the
cumulative distribution, pick intervals (cuts) and
perform interval analysis



Risk analysis methodology : exploitation

The result of the propagation step is a random set on
the output value, that can be complex to visualize.

* We can extract suitable information
— Imprecise mean and variance
— Average imprecision
— A p-box (probability of trespassing a threshold)

— A fuzzy interval (probability of the output inside two
bounds)



Upper and lower distributions of
random fuzzy outputs

— l
tue udO udl tbe T(X)

small variability of the sample
Large imprecision of each fuzzy number F1



Upper and lower distributions of
random fuzzy outputs

1

l

g

tue udO udl tbe T(X)

great variability of the sample
Little imprecision of each fuzzy number Fi



Decision with imprecise probability
techniques

Decisions will be evaluated by means of
intervals bounded by lower and upper
expected utilities:

V() = [intp , p E(1), sup p;, » E(D)]

We are left to compare intervals...

Three-way decisions: yes, no, don’t know



Decision with imprecise probability
techniques

e Accept incomparability when comparing imprecise utility
evaluations of decisions.

OR

e Seclect a single utility value that achieves a compromise

between pessimistic and optimistic attitudes.
— Compare lower expectations of decisions (Gilboa):
infp,, p E(f) > 1nf;, ., p» E(g)
— Generalize Hurwicz criterion

— Select a single probability measure (Shapley value = pignistic
transformation) and use expected utility (SMETS)



Conclusion

o There exist a coherent range of uncertainty
theories combining interval and probability
representations.

— Imprecise probability is the proper theoretical umbrella

— The choice between subtheories depends on how
expressive 1t 1s necessary to be in a given application.

— There exists simple practical representations of
imprecise probability
e Allow to explicitly encode incomplete knowledge.

 How to get this general non-dogmatic approach to
uncertainty accepted by traditional statisticians?



Important theoretical issues

Comparing representations in terms of
informativeness.

Conditioning : several definitions for several
purposes.

Independence notions: distinguish between
epistemic and objective notions.

Find a general setting for information fusion
operations (e.g. Dempster rule of combination).



