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Origins of uncertainty
•  The variability of observed repeatable natural 

phenomena : « randomness ».
–  Coins, dice…: what about the outcome of the next 

throw? 
•  The lack of information: incompleteness

–  because of information is often lacking, knowledge 
about issues of interest is generally not perfect.

•  Conflicting testimonies or reports: inconsistency
–  The more sources, the more likely the inconsistency



Example
•  Variability: daily quantity of rain in Toulouse

–  May change every day
–  It can be estimated through statistical observed data.
–  Beliefs or prediction based on this data

•  Incomplete information : Birth date of Brazil  President
–  It is not a variable: it is a constant!
–  You can get the correct info somewhere, but it is not available.
–  Most people may have a rough idea (an interval), a few know 

precisely, some have no idea: information is subjective.
–  Statistics on birth dates of other presidents do not help much.

•  Inconsistent information : several sources of information 
conflict concerning the birth date (a book, a friend, a 
website). 



Frequency vs. beliefs
1.  Frequencies: capturing variability of physical 

phenomena through repeated observations.
2.  Belief in unique events : due to lack of information

1.  via betting on lottery tickets for non-repeatable events
2.   by analogical reasoning using thought experiment  (balls in an 

urn)
Probability theory used for random phenomena, and 
beliefs. 
The connection: Degrees of belief induced on n+1th trial 
outcome are equated to frequencies of the n previous 
occurrences of a repeatable phenomenon.  



What is a probability given by an expert?

•  Does the expert provide
– An (ill-known) frequency (how often an 

infortunate event may occur?)
– A degree of pure belief ? 

•  Are frequencies and belief degrees always 
commensurate ? 

•  Often rather linguistic than numerical, then 
translated into numbers. 



What is the expressive power of probability 
distributions

Bayesian credo: any state of knowledge can be represented 
by a unique probability distribution.

Do uniform distributions represent ignorance ? 
1.  Ambiguity : do uniform bets express knowledge of 

randomness or plain ignorance? 
2.  Instability : the shape of a probability distribution is not 

scale-invariant, while ignorance is.
3.  Empirical falsification: When information is missing, 

decision-makers do not always choose according to a 
single subjective probability (Ellsberg paradox).  



The paradox of partial ignorance
You have the same knowledge about x >0  as 
about y = 1/x. 
•  x in [a, b] is equivalent to y in [1/b, 1/a]
•  But a uniform distribution on [a, b] is 

incompatible with a uniform distribution on 
[1/b, 1/a]

Conclusion: uniform probability distributions 
do not represent ignorance.



Set-Valued Representations of 
Partial Information

•  A piece of incomplete information about an ill-known 
quantity x is represented by a pair (x, E) where E  is a set 
called a disjunctive (epistemic) set, 

•  E contains all values of x an agent considers not impossible  
and represent the epistemic state of an agent.

•  It is  a subset of mutually exclusive values, one of which is 
the real x. 

•  Such sets are as subjective: E is like the support of a 
subjective probability function.



Set-Valued Representations of 
Partial Information

•  (x, E) means « all I know is that x ∈ E »
•  Examples

–  Intervals E = [a, b]: incomplete numerical information
 uncertainty propagation via interval analysis

–  Classical Logic: incomplete symbolic information
E = Models of a proposition p (or a set thereof) believed true. 

 being able or not to prove or disprove something from a knowledge 
base K



POSSIBILITY THEORY: �
Boolean beliefs

If all you know is that x ∈ E then
-  You believe event A if A will occur in every situation x you consider 

possible :A certainty (necessity) function (logical consequence). 
N(A) = 1 if  E ⊆ A , and 0 otherwise

-  You judge event A possible if it is not incompatible with what you 
know : A Boolean possibility function  (logical consistency)

Π(A) = 1, if A ∩ E ≠ Ø   and 0 otherwise

N(A) = 1 - Π(Ac) ≤ Π(A) 
Π(A ∪ B) = max(Π(A), Π(B)); N(A ∩ B) = min(N(A), N(B)).

N(A) > 0  implies Π(A) = 1
( a simple modal epistemic logic)



Motivation for going beyond 
probability

•  Have a language that distinguishes  between uncertainty 
due to variability from uncertainty due to lack of 
knowledge or missing information. 
–  For describing variability: Probability distributions 
 but information demanding, and paradoxical for ignorance

–  For representing incomplete information : Sets (intervals). 
but a very  crude representation of uncertainty

•  Find representations that allow for both aspects of 
uncertainty : incomplete information about probabilistic 
models



Find an extended  representation of 
uncertainty

•  Explicitly allowing for missing information (= that uses 
sets)

•  Distinguishes between not believing A and believing its 
negation

•  More informative than pure intervals or classical logic: 
with grades of certainty or belief 

•  Less information demanding than single probability 
distributions 

•  Allows for addressing the issues dealt with by both 
standard probability, and logics for reasoning about 
knowledge. 



GRADUAL REPRESENTATIONS OF 
UNCERTAINTY using capacities

Family of propositions or events E forming a  
Boolean Algebra 
–  S, Ø are events that are certain and ever impossible 

respectively.
•  A confidence measure g: a function from E to 

[0,1] such that
–  g(Ø) = 0       ;        g(S) = 1
–  monotony : if A ⊆ B (=A implies B)  then g(A) ≤ g(B) 

•  g(A) quantifies the confidence of an agent in 
proposition A. 

(g is  known as a Choquet capacity, or a fuzzy measure)



BASIC PROPERTIES OF CONFIDENCE 
MEASURES

•  g(A∪B) ≥ max(g(A), g(B)); 
•  g(A∩B) ≤ min(g(A), g(B))
•  It includes: 

–  probability measures:  P(A∪B) = P(A) + P(B) - P(A∩B)
–  possibility measures Π(A∪B) = max(Π(A), Π(B))
–  necessity measures N(A∩B) = min(N(A),N(B))

•  The two latter functions do not require a 
numerical setting



A GENERAL SETTING FOR REPRESENTING 
GRADED CERTAINTY AND PLAUSIBILITY

•  2 conjugate set-functions Pl and Cr generalizing 
probability P, possibility Π, and necessity N.

•  Postulates
–  Cr and Pl are monotonic under inclusion (= capacities).
–  Cr(A) ≤ Pl(A)  "certain implies plausible"
–  Pl(A) = 1 - Cr(Ac) duality certain/plausible
–  If Pl = Cr then it is P.

•  Conventions : 
–  Pl(A) = 0  "impossible" ;  Cr(A) =  1   "certain"
–  Cr(A) = 0  and Pl(A) =1 "ignorance" (no information)
–  Pl(A) - Cr(A) quantifies ignorance about A



Possibility Theory �
(Shackle, 1961, Lewis, 1973, L.J. Cohen 1977, Zadeh, 1978)

•  A piece of incomplete information "x ∈ E" 
admits of degrees of possibility. 

•  E is mathematically a (normalized) fuzzy set.
•  µE(s) = Possibility(x = s) = πx(s)
•  Conventions: 
∀s, πx(s)  is the degree of plausibility of x = s
πx(s) = 0 iff x = s is impossible, totally surprising
πx(s) = 1 iff x = s is normal, fully plausible, unsurprising

(but no certainty)



Improving expressivity of incomplete 
information representations

What about the birth date of the president?
• partial ignorance with ordinal preferences : May 
have reasons to believe that 1933 > 1932 ≡ 1934 > 
1931 ≡ 1935 > 1930 > 1936 > 1929
• Linguistic  information  described  by  fuzzy  sets:  
“ he is old ” : membership µOLD induces a possibility 
distribution on possible birth dates.
• imprecise  subjective  information  summarizing 
opinions of one or several sources: Nested intervals 
E1, E2, …En with confidence levels



POSSIBILITY AND NECESSITY �
OF AN EVENT

How confident are we that x ∈ A ⊂ S ? (an event A occurs) 
given a possibility distribution π  for x on S 

•  Π(A) = maxs∈A π(s) : 
         to what extent some x ∈ A  is possible

(= to what extent A is consistent with π )
 The degree of possibility that x ∈ A
•  N(A) = 1 – Π(Ac) = min s∉A 1 – π(s): 

to what extent no element outside A is possible   
   = to what extent π implies A

   The degree of certainty (necessity) that x ∈ A



Basic properties
Π(A ∪ B) = max(Π(A), Π(B)); 

N(A ∩ B) = min(N(A), N(B)). 
Mind that most of the time :          

Π(A ∩ B) < min(Π(A), Π(B));
 N(A ∪ B) > max(N(A), N(B)

Example Total ignorance on A and B = Ac 
then N(A) = N(Ac) = 0

 
Corollary N(A) > 0 ⇒ Π(A) = 1



A pioneer of possibility theory
•  In the 1950’s, G.L.S. Shackle called "degree of potential 

surprize" of an event its degree of impossibility = 1 - Π(Α).

•  Potential surprize is valued on a disbelief scale, namely a 
positive interval of the form [0, y*], where y* denotes the 
absolute rejection of the event to which it is assigned, and 0 
means that nothing opposes to the occurrence of A. 

•  The degree of surprize of an event is the degree of surprize of 
its least surprizing realization. 

•  He introduces a notion of conditional possibility



Qualitative vs. quantitative possibility theories

•  Qualitative:
–  comparative:  A  complete  pre-ordering  ≥π   on  U

 A well-ordered partition of U: E1 > E2 > … > En
–  absolute: πx(s) ∈ L = finite chain, complete lattice...

•  Quantitative: πx(s) ∈ [0, 1], integers...
One must indicate where the numbers come from.

All theories agree on the fundamental maxitivity axiom    
Π(A ∪ B) = max(Π(A), Π(B))

Theories diverge on the conditioning operation



POSSIBILITY AS UPPER PROBABILITY

•  Given a numerical possibility distribution π, define
    P(π) = {P |  P(A) ≤ Π(A) for all A}

•  Then, generally it holds that 
           Π(A) = sup {P(A) | P ∈ P(π)}; 
           N(A) = inf {P(A) | P ∈ P(π)}

(coherence)
•  So π is a faithful representation of a family of 

probability measures



LIKELIHOOD FUNCTIONS
•  Likelihood functions λ(x) = P(A| x) behave like possibility 

distributions when there is no prior on x, and λ(x) is used as 
the likelihood of x.

• If λ(B) is the likelihood that x ∈ B  then λ should be set-
monotonic: {b} ⊆ B implies λ(b) ≤ λ(B)

• It holds that λ(B) = P(A| B) ≤ maxx ∈ B P(A| x) 

              It implies λ(B) = maxx ∈ B λ(x) 
(But possibility degrees here are defined up to a positive 

multiplicative function)



Maximum likelihood principle is in 
agreement with possibility theory

•  The classical coin example: θ is the unknown 
probability of “heads”

•  Within n experiments: k heads, n-k tails
•  P(k heads, n-k tails | θ) = θk·(1- θ)n-k is 
   the degree of possibility π(θ) that the probability of 

“head” is θ.
 In the absence of other information the best choice 

is the one that maximizes π(θ),  θ ∈ [0, 1] 
It yields θ = k/n.



Blending intervals and probability

•  Representations that may account for variability, 
incomplete information, and belief must combine 
probability and epistemic sets.
–  Sets of probabilities : imprecise probability theory
–  Random(ised) sets : Dempster-Shafer theory
–  Fuzzy sets: numerical possibility theory

•  Relaxing the probability axioms : 
–  Each event has a degree of certainty and a degree of plausibility, 

instead of a single degree of probability
–  When plausibility = certainty, it yields probability



Imprecise probability theory
•  A state of information is represented by a family P of 

probability distributions over a set X.
•  To each event A is attached [P*(A), P*(A)], a probability 

interval such that 
–  P*(A) = inf{P(A), P∈ P}
–  P*(A) = sup{P(A), P∈ P} = 1 – P*(Ac) 

        cP = {P, P(A) ≥ P* (A) for all A} is  convex 
•  Usually cP strictly contains family P 
-> The basic representation tool is a convex set of 
probabilities (credal set)



Frequentist view
•  Incomplete knowledge of a frequentist 

probabilistic model : ∃ P ∈ P.
–  Expert opinion about frequencies (fractiles, intervals 

with confidence levels)
–  Subjective estimates of support, mode, etc. of a 

distribution
–  Parametric model with incomplete information on 

parameters (partial subjective information on mean 
and variance)

–  Parametric model with confidence intervals on 
parameters due to a small number of observations



Subjectivist view (Peter Walley)
•   Expert provides for selected events Ai, i = 1, …, n 

–  Plow(A), the highest acceptable price for buying a bet on event A 
winning 1 euro if A occurs

–  Phigh(A) = 1 – Plow(Ac) is the least acceptable price for 
selling this bet.

–  These prices may differ (no exchangeable bets)
•  Epistemic state is modelled by the  convex probability set 

P = {P: P(Ai) ≥ Plow(Ai) i = 1, …, n }  

•  Warning : P*(A) = inf{P(A), P∈ P} is a degree of belief 
in A but there is no unknown  P ∈ P



WHY REPRESENTING INFORMATION 
BY PROBABILITY FAMILIES ?

•  In the case of generic (frequentist) information 
using a family of probabilistic models, rather than 
selecting a single one, enables to account for 
incompleteness and variability.

•  In the case of subjective belief: distinction 
between 
–  believing neither a proposition nor its opposite 

(P*(A) and P*(Ac) low)
–   and believing its negation                           

(P*(A) low and P*(Ac) high). 



Random sets and evidence theory
 A probability distribution over subsets of S (a random set) : 
            ∑E⊆S m(E) = 1  (mass function), m(∅) = 0
 
•  The family  F = {E: m(E) > 0} of « focal » (disjunctive) 

non-empty sets  represents 
–   A collection of incomplete observations (imprecise statistics).
–  Unreliable testimonies

•  m is a randomized epistemic state where 
–  m(E) = probability(E is the correct epistemic state) (≠ P(E))

= probability(only knowing”(x in E)”)
–  m(E) is a probability mass that should be distributed 

among elements of E but are not by lack of information.



Theory of evidence
•  degree of certainty (belief) :    

–  Bel(A) =          ∑           m(Ei)
Ei ⊆ A, Ei ≠ Ø

–  total mass of information implying  the occurrence of A
–  (probability of provability)

•  degree of plausibility :                          
–  Pl(A) = ∑         m(Ei) = 1 - Bel(Ac)  ≥ Bel(A)

      Ei ∩ A ≠ Ø    
–  total mass of information consistent with  A
–  (probability of consistency)



Canonical examples

•  Objectivist : Frequentist modelling of a collection 
of incomplete observations (imprecise statistics) : 

•  Uncertain subjective  information: 
–  Merging of unreliable testimonies (Shafer’s book) : 

human-originated singular information
•  Unreliable sensors :  the quality/precision of the 

information depends on the ill-known sensor state. 



Example of uncertain evidence : Unreliable 
testimony (SHAFER-SMETS VIEW)

•  « John tells me the president is between 60 and 70 years 
old, but there is some chance (subjective probability p) he 
does not know and makes  it up».
–  E =[60, 70];  Prob(Knowing “x∈ E =[60, 70]”) = 1 - p.

–  With probability p, John invents the info, so we know nothing 
(Note that this is different from  a lie).

•   We get a simple support belief function :           
m(E) = 1 – p and m(S) = p

•  Equivalent to a possibility distribution 
–    π(s) = 1 if x ∈ E       and  π(s) = p otherwise.



Example of statistical belief function: 
imprecise observations in an opinion poll

•  Question : who is your preferred candidate 
                   in C = {a, b, c, d, e, f} ???

–  To a population Ω = {1, …, i, …, n} of n persons.
–  Imprecise responses r = « x(i) ∈ Ei » are allowed
–  No opinion (r =C) ; « left wing » r = {a, b, c} ; 
–  « right wing » r = {d, e, f} ;
–   a moderate candidate : r = {c, d}

•  Definition of mass function: 
–  m(E) = (1/n)·card({i, Ei = E})
–  = Proportion of imprecise responses « x(i) ∈ E »



•  The  probability  that  a  candidate  in  subset   A  ⊆  C   is 
elected is imprecise :   

                    Bel(A) ≤ P(A) ≤ Pl(A)
•  There is a fuzzy set F of potential winners: 

µF(x) = ∑ x ∈ E m(E) = Pl({x}) (contour function)
•   µF(x) is an upper bound of the probability that x is elected. 

It  gathers  responses of those who did not give up voting  
for x

•  Bel({x}) gathers  responses of those who claim they will 
vote for x and no one else.



PARTICULAR CASES
•  INCOMPLETE INFORMATION: 
                                                   m(E) = 1, m(A) = 0‚ A ≠ E
•  TOTAL IGNORANCE : m(S) = 1:

–   For all  A≠ S, Ø, Bel(A) = 0, Pl(A) = 1
•  PROBABILITY:  if ∀i, Ei = singleton {si} (hence disjoint 

focal sets )
–  Then, for all A, Bel(A) =  Pl(A) = P(A)
–  Hence precise + scattered information  

•  POSSIBILITY THEORY : the opposite case 
E1 ⊆ E2 ⊆ E3… ⊆ En : imprecise and coherent information  
–  iff  Pl(A ∪ B) = max(Pl(A), Pl(B)), possibility measure
–  iff  Bel(A ∩ B) = min(Bel(A), Bel(B)), necessity measure



Possibility theory case

•  Let mi = αi – αi+1       then m1 +… + mn = 1, 
with focal sets = cuts Ai = {s, π(s) ≥ αi}

          A basic probability assignment (SHAFER)
•  π(s) = ∑i: s∈Fi mi (one point-coverage function) = Pl({s}).
•  Only in the consonant case can m be recalculated from π 
•  Bel(A) = ∑Fi⊆A  mi = N(A); Pl(A) = Π(A)

1

F

α3

possibility levels
1 > α2 > α3 >… > αn

α2
α4



Theory of evidence vs. imprecise 
probabilities

•  Bel is ∞-monotone (super-additive at any order)
•  Bel is a special case of lower probability

–  The set Pbel = {P ≥ Bel} characterizes Bel: 
 Bel (A) =  inf {P(A) | P(B) ≥ Bel(B) for all B} 

•  The solution m to the set of equations ∀ A ⊆ X
g(A) =  ∑  m(Ei)
     Ei ⊆ A, Ei ≠ Ø

is unique (Moebius transform) 
–  It is positive iff g is a belief function



LANDSCAPE OF UNCERTAINTY 
THEORIES

BAYESIAN/STATISTICAL PROBABILITY
Randomized points

UPPER-LOWER PROBABILITIES
Disjunctive sets of probabilities       

                          

DEMPSTER UPPER-LOWER PROBABILITIES                 
SHAFER-SMETS BELIEF FUNCTIONS

Random disjunctive sets

Quantitative Possibility theory Classical logic
Fuzzy (nested disjunctive) sets Disjunctive sets



Language difficulties
•  Imprecise probability, belief functions and possibility 

theory  use different basic tools
–  Imprecise probabilities: Convex probability sets (Credal sets)
–  Belief functions: Moebius basic probability mass
–  Possibility theory: Possibility distributions

•  Concepts that make sense for credal sets, 
may be hard to interpret in terms of 
Moebius transforms or possibility 
distributions and conversely



Practical representations

•  Fuzzy intervals
•  Probability intervals
•  Probability boxes
Some are special random sets some not.  

Simplified representations help us 
–  cut down computation costs
– Facilitate elicitation
–  summarize results in a clear way



How to build  possibility distributions�
(not related to linguistic fuzzy sets!!!)

•  Nested random sets (= consonant belief functions)
•  Likelihood functions (in the absence of priors).
•  Probabilistic inequalities (Chebyshev…)
•  Confidence intervals (moving the confidence level between 

0 and 1)
•  The cumulative PDF of P is a possibility distribution 

(accounting for all probabilities stochastically dominated 
by P)



From confidence sets to possibility 
distributions

•  Let E1, E2, …En be a nested family of sets
•  A set of confidence levels a1, a2, …an in [0, 1]
•  Consider the credal set
          P = {P, P(Ei) ≥ ai, for i = 1, …n}
•  Then P is representable by means of a possibility 

measure with distribution

π(x) = mini = 1, …n max (µEi(x), 1- ai)



a1

a2

1

0

E1

E2

E3

π

POSSIBILITY  DISTRIBUTION INDUCED 
BY EXPERT  CONFIDENCE INTERVALS

α2

α3

m2= α2 - α3



1

0

π

α

πα

FUZZY INTERVAL: N(πα) = 1 - α

A possibility distribution π  can be obtained from any 
family of nested confidence sets : 

P(π) = {P |  P(πα) ≥ 1 - α, α ∈ (0, 1] }



Possibilistic view of probabilistic 
inequalities

They can be used for knowledge representation
•  Chebyshev inequality defines a possibility distribution that 

dominates any density with given mean and variance:  

P(V ∈ [xmean – kσ, xmean + kσ]) ≥ 1 – 1/k2

 is equivalent to writing 
π(xmean – kσ) = π(xmean + kσ) = 1/k2 

   
•  A triangular fuzzy number (TFN) defines a possibility 

distribution that dominates any unimodal density with the 
same mode and bounded support as the TFN.



Chebychev Camp-Meidel



Probability boxes
•  A set  P(F*, F*

 ) = {P: F* ≥ P ≥ F*} induced by two 
cumulative disribution functions is called a 
probability box (p-box), 

•  A p-box is a special random interval whose upper and 
bounds induce the same ordering.

F*

F*

0

1

α

Eα



Probability boxes from possibility 
distributions

•  fuzzy intervals are more precise than with the 
corresponding pairs of PDFs:
–  F*(a) = ΠM( ( -∞, a])  = π(a) if a ≤ m*

                     = 1 otherwise.
–  F*(a) = NM( ( -∞, a] )  = 0 if a < m*

                                           = 1 - π(a) otherwise
•   P(π) is a proper subset of P(F*, F*

 ):     Not all P in 
P(F*, F*

 )  are such that Π ≥ P

•  In fact you can extract a p-box from any credal set P



P-boxes vs. fuzzy intervals

0 1 2 3 
0 

1 

0.5 
   F*     F*  π  

A  triangular fuzzy number with support [1, 3] and mode 2. 
Let P be defined by P({1.5})=P({2.5})=0.5. 
Then  F* < F < F, but  P ∉ P(Π)  
                         since P({1.5, 2.5}) = 1 > Π({1.5, 2.5}) = 0.5



Cumulative distributions are �
possibility distributions

•  A cumulative distribution F is a possibility 
distribution generated by nested sets of the form 
[x, +∞), enclosing all probability distributions that 
stochastically dominate F. 

If π = F , then 
 P(π)= {P: Fp ≤ F} = {p: P([x, +∞)) ≥ 1-F(x)} 

                    = {P: P(F≥ α) ≥ 1-α, α > 0} 
and  we have that P(A) ≤ supx in A F(x).



Fuzzy intervals are (2-sided) 
cumulative distributions 

•  Consider a fuzzy interval π with cuts 
πα = [aα, bα], 0< α ≤ 1, a1= b1 = m

It is a cumulative distribution in the sense that 
πα(aα) = πα(bα) = P((-∞, aα]U[bα, +∞)) 

for some probability measure P with mode m.

Ordering based on distance from m. 



Putting together p-boxes and 
fuzzy intervals

•  The credal set of a p-box (F*, F*) is the 
intersection of possibilistic credal sets of π*= F* 

and  π*= 1 - F*
 :   

     P(F*, F*)= {p: F*≤ Fp ≤ F*} = P(F*) ∩ P(1 - F*) 
   = {P: P([x, +∞)) ≥ 1-F*(x) for all x  
                              and P((-∞,x]) ≥ F*(x) for all x} 
=  {P: P(F*≥ α) ≥ 1-α > P(F*≥ α) for all 0 < α≤ 1} 
where α = F(x).

•  F*, F* are comonotone



Generalized p-box
•  same construction using nested intervals 

and comonotone functions δ ≤ π such that 
1- δ is a possibility distribution.

•  The pair (π, δ) is a generalized p-box with 
credal set P(π, δ) = P(π) ∩ P(1-δ)

 with  P(π) = {P: P(π ≥ α) > 1 – α, 0< α ≤ 1}

    P(1-δ) = {P: P(1-δ ≥ α) > 1- α, 0< α ≤ 1}
      It still generates a belief function!



α  = π(a) = π(b); �
β  = 1 - δ(a) = 1 - δ(b) =1- δ(π-1(α)).�

1 -α ≤ P(Eα) ≤ β

1

0

π

α δ

Generalized p-box
Eα

a b

 1 - β



Examples, special cases, etc.

•  Nested confidence sets Ei with  ai≤ P(Ei) ≤bi

•  Z-numbers (Zadeh): It is likely that I earn a lot
•  Special cases
–  π = F*, δ = F*: pbox.
–   δ = 0 : fuzzy interval.
–  π = δ : thin cloud (Neumaier)

•  Extension : (π, δ) non comonotone: cloud of 
Neumaier (not a belief function). 



From generalized p-boxes to 
clouds



How useful are these 
representations: 

•  P-boxes can address questions about 
threshold violations (x ≥ a ??), 

not  questions of the form  a ≤ x ≤ b

•  The latter questions are better addressed by 
possibility distributions or generalized p-
boxes around a specific value.



Probability intervals

•  Probability intervals = a finite collection of 
imprecise assignments [li , ui ] attached to 
elements si of a finite set S.  
•  The collection {[li , ui ] i = 1,… n} induces the 

family          PL = {P: li ≤  P({si})  ≤ ui}. 
•  Intervals [li , ui ] can be made optimally narrow.  
•  Lower/upper probabilities on events are easy to compute 
•  P* is a 2-monotone Choquet capacity, not a belief 

function.



Application to Risk Analysis

•  Formal problem: 
Given a numerical function f(x, y, z, …), and some 
uncertain knowledge on x, y, z, … interval, possibilistic 
(πx), probabilistic (py) or random set-like (vz)… find the 
resulting uncertainty on f(x, y, z, …).

•  Application Contexts: Evaluation of risks of potentially 
polluted sites for man and the environment 

•  Models simulate the transfer of pollutants from a source to 
a vulnerable target, for different scenarii of exposure. 



Risk analysis methodology

•  Elicitation/ data collection for inputs
•  Propagation of uncertainty
•  Exploitation of results 
•  Decision



Risk analysis methodology : elicitation

The context of uncertainty theories is versatile and 
lends itself to a representation of knowledge about 
input variables faithful to what is available.

Don’t put more information than what you actually 
have

•   sufficient statistics: probability distribution
•  Ill-known parametric model: p-box
•  Expert-supplied intervals: fuzzy intervals, gen p-box
•  Support and mode: fuzzy interval



Risk analysis methodology : propagation

Combining Monte-Carlo and interval analysis 
techniques. 

•  Fuzzy intervals, p-boxes and generalized p-boxes 
are random sets amenable to Monte-Carlo methods:

•  Instead of picking values at random via the 
cumulative distribution,  pick intervals (cuts) and 
perform interval analysis



Risk analysis methodology : exploitation

The result of the propagation step is a random set on 
the output value, that can be complex to visualize. 

•  We can extract suitable information 
–  Imprecise mean and variance
–  Average imprecision
–  A p-box (probability of trespassing a threshold)
–  A fuzzy interval (probability of the output inside two 

bounds)



Upper and lower distributions of 
random fuzzy outputs



Upper and lower distributions of 
random fuzzy outputs



Decision with imprecise probability 
techniques

•  Decisions will be evaluated by means of 
intervals bounded  by lower and upper 
expected utilities:

•  V(f) = [infP in P E(f), sup P in P E(f)]

•  We are left to compare intervals…
•  Three-way decisions: yes, no, don’t know



Decision with imprecise probability 
techniques

•  Accept incomparability when comparing imprecise utility 
evaluations of decisions.

OR
•  Select a single utility value that achieves a compromise 

between pessimistic and optimistic attitudes. 
–  Compare lower expectations of decisions (Gilboa):
        infP in P E(f) > infP in P E(g)
–  Generalize Hurwicz criterion 
–  Select a single probability measure (Shapley value = pignistic 

transformation) and use expected utility (SMETS) 



Conclusion
•  There exist a coherent range of uncertainty 

theories combining interval and probability 
representations.
–  Imprecise probability is the proper theoretical umbrella
–  The choice between subtheories depends on how 

expressive it is necessary to be in a given application. 
–  There exists simple practical representations of 

imprecise probability 
•  Allow to explicitly encode incomplete knowledge.
•  How to get this general non-dogmatic approach to 

uncertainty accepted by traditional statisticians? 



Important theoretical issues

•  Comparing representations in terms of 
informativeness.

•  Conditioning : several definitions for several 
purposes.

•  Independence notions: distinguish between 
epistemic and objective notions.

•  Find a general setting for information fusion 
operations (e.g. Dempster rule of combination).


