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Motivation 

ÅRisk factors representation and uncertainty 
quantification is complicated in large infrastructure 
projects. 

 

ÅMultidisciplinary nature needs a standard tool to 
facilitate risk communication. 

 

ÅRisk management must take into consideration the 
uncertainty factors in the system. 

 
ü They can be affected by wave-induced erosion.  
ü Assess the interaction between natural weather conditions and 

technological installations in a quantitative and qualitative 

manner.  

ü Prevent accidents in technological facilities. Systems able to 

resist extreme weather conditions are needed in the energy 

industry to ensure a reliable electricity supply. 
ü Coastal areas are vital economic hubs often affected by 

erosion, flood risk and long-term habitat deterioration. 
The growth of economy coupled with the acceleration of 
climate change draws the attention to sustainable coastal 
defence plans.  
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Motivation 

ÅProbabilistic graphical models (like Bayes nets), 
effective mathematical tool for uncertainty 
quantification and system modelling.  

ÅAllows to capture variable dependencies of complex 
systems. 

ÅInference computation is a key method to update 
outcomes in Bayesian networks. 

ÅReliable method of inference computation in Credal 
networks is necessary. 
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ώϝϐ{Φ ¢ƻƭƻΣ 9Φ tŀǘŜƭƭƛΣ ŀƴŘ aΦ .ŜŜǊΣ άwƻōǳǎǘ ǾǳƭƴŜǊŀōƛƭƛǘȅ ŀƴŀƭȅǎƛǎ ƻŦ ƴǳŎƭŜŀǊ ŦŀŎƛƭƛǘƛŜǎ ǎǳōƧŜŎǘ ǘƻ ŜȄǘŜǊƴŀƭ ƘŀȊŀǊŘǎΣέ Stoch. Environ. Res. Risk Assess., vol. 31, no. 10, pp. 2733-- 2756, 
2017. 

Enhanced Bayesian Network[*] . 
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Bayesian Networks 

ÅThe Joint Probability Distribution (JPD) describes 
entirely ƴŜǘǿƻǊƪΩǎ dependability, 
 

 

 

ÅBy introducing evidence, infer updated outcomes. 

ÅIntuitive and relatively easy to implement. 

A Bayesian network is a probabilistic graphical model to study and analyse the 
dependencies of components (random variables) that make up a system.  
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Enhanced Bayesian Networks 

ÅCalculation of conditional probabilities  
consist in the approximation of the 
failure probability. 
 
 

╟ὅȿὄ █ὃὨὃ
ȟ

 

 
 
f(A): Probability Density Function of continuous node A. ɱȟ is the 
domain when C=c in the space of C given B=b.  

Bayesian Networks enhanced* with Structural Reliability Methods (SRM) permit to 
calculate the conditional probability values of discrete children that come from 
continuous-parent nodes.  

 H.D. Estrada-Lugo             

█ὃ 

[x] D. Straub and A. Der KiureghianΣ ά.ŀȅŜǎƛŀƴ bŜǘǿƻǊƪ 9ƴƘŀƴŎŜŘ ǿƛǘƘ {ǘǊǳŎǘǳǊŀƭ wŜƭƛŀōƛƭƛǘȅ aŜǘƘƻŘǎΥ aŜǘƘƻŘƻƭƻƎȅΣέ J. 
Eng. Mech., vol. 136, no. 10, pp. 1248--1258, Oct. 2010. 
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Imprecise data sets (discrete):  
Credal Networks 

ÅImprecision is represented through the so called credal 
sets ὑὼ . 
 
 
 
 
ÅCNs inherent all the probabilistic and graphical 

characteristics of BNs. 
 
ÅA CN is a set of BNs, each with different probability values. 

 

 

Generalization of BN to implement imprecise discrete variables in the form of intervals.  
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Different extreme points combinations 
make a set of BNs that makes up a CN. 
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Imprecise datasets (continuous): 
Probability boxes 

ÅWhen using SRM failure probability is now 

represented as: 

ὖ ÍÁØ ὴὼȟ—Ὠὼ 

 

ÅIn this way, the continuous probability distributions 

affected by aleatoric and epistemic uncertainty are 

taken into account. 

A characterization of an uncertain continuous measure in the cumulative distribution 
space.   
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ÅIt takes advantage of Object-Oriented programming in Matlab. 

ÅParallelization of high demanding tasks. 

ÅEasy connectable with 3rd party toolboxes. 

ÅExcellent platform for EBN. 

www.cossan.co.uk 

Computational toolbox 

 H.D. Estrada-Lugo             9/35 



Enhanced BN to Credal nets 
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Enhanced Bayesian network [*] (Advanced BN)  

ÅRectangle-Discrete 

ÅEllipse-Interval 

ÅCircle-Continuous 

ÅTrapezoid- P-box 
[*] Silvia Tolo, Tutorial Enhanced Bayesian networks. OpenCossan Tutorial. 

ÅRectangle-Interval 

Credal network[*]  Enhanced Bayesian network[*]  

Reduction  

process 
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Study cases 

Oscillating Water Column. 

ÅProbability wave overtopping for different configurations of 
OWC. 

ÅExperimental data. 

ÅExact Inference method. 

 

General Railway system. 

ÅComparison of exact and approximate inference method. 

ÅProbability of having an accident (derailment) due to different 
rail tracks and train conditions. 

ÅSynthetic data. 
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Bayesian updating (Inference) 
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Computation of posterior distribution of a query node given (or not) evidence. 
Exact inference methods: 
Å Variable elimination (Marginalization).  
Å Junction tree algorithm (Clique tree). 
Å Recursive conditioning. 
Å And/Or search. 

Approximate inference. 
Å Inner and outer approximation. 
Å Importance sampling. 
Å Stochastic MCMC simulation. 
ÅMini-bucket elimination. 
ÅGeneralized belief propagation. 
Å Variational methods. 
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Exact inference 
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Computation of posterior distribution of a query node given (or not) evidence. 
Exact inference methods: 
Å Variable elimination (Marginalization).  
Å Junction tree algorithm (Clique tree). 
Å Recursive conditioning. 
Å And/Or search. 

Approximate inference. 
Å Inner and outer approximation. 
Å Importance sampling. 
Å Stochastic MCMC simulation. 
ÅMini-bucket elimination. 
ÅGeneralized belief propagation. 
Å Variational methods. 

P(x) 0 1 

Posterior 
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Inference with intervals 
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Computation of posterior distribution of a query node given (or not) evidence. 
Exact inference methods: 
Å Variable elimination (Marginalization).  
Å Junction tree algorithm (Clique tree). 
Å Recursive conditioning. 
Å And/Or search. 

Approximate inference. 
Å Inner and outer approximation. 
Å Importance sampling. 
Å Stochastic MCMC simulation. 
ÅMini-bucket elimination. 
ÅGeneralized belief propagation. 
Å Variational methods. 
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Inference with intervals 
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It is based on the joint credal set definition to calculate the bounds of the marginal 
probability as: 
 
 
 
 
 
 
 
 
This represents a non-linear optimization problem with a multilinear objective function. 
(The head ache of CN inference). 
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Method 1: Exact inference* 

ÅTake the joint probability distribution function of upper bounds of all the variables in the 
net. Artificial JPDs are created (each containing a case of the query node). 

 

 

 

 

 

ÅOuter approximation is obtained by computing inference in the artificial JPD containing 
all-upper and all-lower bounds.  
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Artificial Joint 
Probability Distribution 

ώϝϐ{Φ ¢ƻƭƻΣ 9Φ tŀǘŜƭƭƛΣ ŀƴŘ aΦ .ŜŜǊΣ ά!ƴ LƴŦŜǊŜƴŎŜ aŜǘƘƻŘ ŦƻǊ .ŀȅŜǎƛŀƴ bŜǘǿƻǊƪǎ ǿƛǘƘ tǊƻōŀōƛƭƛǘȅ LƴǘŜǊǾŀƭǎΣέ ICVRAM ISUMA 
UNCERTAINTIES conference proceedings, no. April, 2018. 



Method 1: Exact inference 

ÅTake the joint probability distribution function of upper bounds of all the variables in the 
net. Artificial JPDs are created (each containing a case of the query node). 

 

 

 

 

ÅInner approximation is obtained by finding the artificial JPD that maximizes and minimizes 
the posterior probability of queried variable.  
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Case study 1: Oscillating water column 

ÅPower generator that converts the energy provided by 
rise and fall of water inside the column due to sea 
waves close the shoreline. 

ÅExperimental scaled (1:20) model of an OWC was built 
in the laboratory. 

 

ÅTo study the hydrodynamic efficiency by the addition 
of harbour walls to the OWC.  

 

ÅIn a real model, harbour walls would increase 
probabilities of flooding and  station damage.  

 

 
ü They can be affected by wave-induced erosion.  
ü Assess the interaction between natural weather conditions and 

technological installations in a quantitative and qualitative 

manner.  

ü Prevent accidents in technological facilities. Systems able to 

resist extreme weather conditions are needed in the energy 

industry to ensure a reliable electricity supply. 
ü Coastal areas are vital economic hubs often affected by 

erosion, flood risk and long-term habitat deterioration. 
The growth of economy coupled with the acceleration of 
climate change draws the attention to sustainable coastal 
defence plans.  
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[*] K. Soleimani, M. J. Ketabdari, and F. KhorasaniΣ άCŜŀǎƛōƛƭƛǘȅ ǎǘǳŘȅ ƻƴ ǘƛŘŀƭ ŀƴŘ ǿŀǾŜ ŜƴŜǊƎȅ ŎƻƴǾŜǊǎƛƻƴ ƛƴ LǊŀƴƛŀƴ ǎŜŀǎΣέ {ǳǎǘŀƛƴΦ 9ƴŜǊƎȅ ¢ŜŎƘƴƻƭΦ !ǎǎŜǎǎƳŜƴǘǎΣ ǾƻƭΦ ммΣ ǇǇΦ 
77ς86, Sep. 2015. 

Conventional OWC structure[*] . 
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ÅExperimental layout of OWC with harbour walls[*] . 
 

OWC 
 

Incoming wave 
 

[*] [D. Raj David, S. Vallam, and S. Sannasi AnnamalaisamyΣ ά9ŦŦŜŎǘ ƻŦ Harbor ²ŀƭƭǎ ƻƴ ǘƘŜ 9ŦŦƛŎƛŜƴŎȅ ƻŦ ŀƴ hǎŎƛƭƭŀǘƛƴƎ ²ŀǘŜǊ /ƻƭǳƳƴΣέ J. Waterw. Port, Coastal, Ocean Eng., vol. 
144, no. 2, p. 04017043, 2017. 
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Case study:  
Addition of harbour walls to an OWC* 
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 Credal network after reduction using System 
Reliability Methods. 

[*] H. D. Estrada-[ǳƎƻΣ 9Φ tŀǘŜƭƭƛΣ aΦ 5Ŝ !ƴƎŜƭƛǎΣ ŀƴŘ 5Φ wŀƧ 5ŀǾƛŘΣ ά.ŀȅŜǎƛŀƴ ƴŜǘǿƻǊƪǎ ǿƛǘƘ ƛƳǇǊŜŎƛǎŜ ŘŀǘŀǎŜǘǎ: application to oscillating water 
ŎƻƭǳƳƴΣέ 9ǳǊƻǇŜŀƴ {ŀŦŜǘȅ ŀƴŘ wŜƭƛŀōƛƭƛǘȅ /ƻƴŦŜǊŜƴŎŜ ǇǊƻŎŜŜŘƛƴƎǎΣ нлмуΦ 
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Case of study 1: OWC  
Results 
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Harbour wall inclination top view. 
Harbour wall top view. 
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Method 1: Exact inference 

VThis method is computationally cheap. 

V Reliable when extreme scenarios are of the interest. 

VUncertainty attached to the bounds provided. 

 

 

o  Boolean variables. 

o  Overestimation of upper bounds. 

o  Underestimation of lower bounds. 

o  Not suitable for large networks, number of inference computations increase as 2n. 
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Method 2: Approximate inference 

ÅApproximate inference with Linear programming. Optimization task. 

ÅReduce credal sets to singletons called Extreme Points  

different from the Free variable Xj.  

So the constrained queried-variable (x0) lower bound is: 

 

 

 

 

 

Linear combination of Xj local probabilities. 

A. Antonucci, C. P. De Campos, D. Huber, and M. ZaffalonΣ ά!ǇǇǊƻȄƛƳŀǘŜ ŎǊŜŘŀƭ ƴŜǘǿƻǊƪ ǳǇŘŀǘƛƴƎ ōȅ ƭƛƴŜŀǊ ǇǊƻƎǊŀƳƳƛƴƎ ǿƛǘƘ ŀǇǇƭƛŎŀǘƛƻƴǎ ǘƻ ŘŜŎƛǎƛƻƴ ƳŀƪƛƴƎΣέ Int. J. Approx. 
Reason., vol. 58, pp. 25ς38, 2015. 
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Method 2: Approximate inference 

 

 

 

 

 

ÅIterations over Xj are done to perform a local search. 

ÅOnce an approximation (extreme point) to the optimal solution is calculated. The Xj 
variable released and a new Xj is used as the free variable.  

ÅThe programme stops iterating when no further improved  approximation is found. 

 

A. Antonucci, C. P. De Campos, D. Huber, and M. ZaffalonΣ ά!ǇǇǊƻȄƛƳŀǘŜ ŎǊŜŘŀƭ ƴŜǘǿƻǊƪ ǳǇŘŀǘƛƴƎ ōȅ ƭƛƴŜŀǊ ǇǊƻƎǊŀƳƳƛƴƎ ǿƛǘƘ ŀǇǇƭƛŎŀǘƛƻƴǎ ǘƻ ŘŜŎƛǎƛƻƴ ƳŀƪƛƴƎΣέ Int. J. Approx. 
Reason., vol. 58, pp. 25ς38, 2015. 
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Method 2: Approximate inference 

Å is an    upper approximation of lower probability bound               of the CN. 

Å           is lower approximation of the upper bound              of the CN. 
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